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SECTION 1

INTRODUCTION TO EQUATIONS OF MOTION FOR CONTROLLED
SPINNING PROJECTILES

The notations and conventions which have been adopted are

consistent with old NACA practice, with the report by Charters,
reference [l] , and with the monograph by Jones, reference [2].

Newton's laws for describing the motion of rigid bodies state
that the sum of all external forces acting on a body equals the time
rate of change of momentum, and the sum of the moments of forces
equals the time rate of change of moment of momentum.

ZY (m-U)

All quantities in equations (1-1) are specified relative to axes fixed,

in space. Consequently, the six component equations of motion repre-
sented by the veotor expressions of equations (1-1) are too unwieldy
for practical use, since the moments of forces and the body inertia
matrix would vary with time with respect to an inertial (fixed) axis

system. The difficulty is overcome by referring all qqantities to an
Eulerian or moving axis system which is coincident with a set of
axes fixed on the body. The formulation in terms of moving axes is
made by recalling that:

d d

fixed axes 'moving axes

which permits equations (1-1) to be written as
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- d(•rU) + nx(mU)

dt

(1-2)

d (1x)H+ Sdt

Equations (1-2) describe body motion in terms of linear momentum
and moments of momentum referred to the moving coordinate, and 0,
the angular velocity vector of the moving frame relative to inertial

(fixed) space.

The force components and the moment components are resolved onto
a coordinate frame which is associated with the projectile.

There are a number of coordinate frames which are useful in the
analysis of controlled spinning projectiles. These will be intro-

duced at this time, even though most of them will not be used until
much later. The justification for introducing them here is that

most of this notational complexity is caused by the multiplicity of

coordinate frames.
p

Each coordinate frame is a right-handed coordinate frame with

origin 0, and three mutually orthogonal axes which are designated

the x-axis, y-axis, and z-axis, respectively. A right-handed p

coordinate frame is one in which the conventions for positive
rotations have been coordinated with the positive direction of the

axes so that a right-handed screw, pointed in the positive direction
of an axis will advance in a positive direction when rotated in a
clockwise sense, as seen looking in the positive direction. A right-

handed frame is shown in Figure (1-1).
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z

Figure (1-1). A Right-Handed Coordinate Frame

The following coordinate frames will be useful.

x y0 z0  an inertial coordinate frame

xF yF z a coordinate frame fixed to the cruciform canards

x t y' xt a coordinate frame fixed in the body of the projectile

x" y" z" a stabilized coordinate frame which moves with the

projectile

x T z a coordinate frame which is fixed in the target

x y z an aeroballistic coordinate frame
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Several vectors will be resolved onto the several coordinate

frames as follows:

R ix + jy + kz position

S iu jv + kw velocity

- ia + jb + kc translational acceleration
(1-3)

ip + jq + kr ; angular velocity

- Ip + jq + kr ; angular acceleration

* iX + JY + kZ ; force

U + JM + kN moment

where i, J, and k are unit vectors in the x, y, z directions,

respectively,

The equations of motion of a rigid body have been given by

Jones. The equations are expressed with respect to a moving coordinate
frame whose origin coincides with the center of gravity of the rigid

body. The equations will be written initially with respect to an
unprimed coordinate frame and the semantics of the equations will
tighten up in the discussion which ensues, The equations are:

m[u - vr + wq - + XG +

m(v - wp + ur - Y + Y G Force Equations (1-4)

m[w - uq + vp] - Z + ZG

- h 2 r + h 3 q = L

h2 " h 3 p + 4,r * M Moment Equations (1-5)

3 "hq + h2P =N
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hI a Ap - Fq - Er

h, - Bo - Dr - Fp Angular Momentum Equations (1-6)

h = Cr - Ep - Dq

where

XG' YGI ZG are components of a force vector due

to gravity

hi, h2 , h3  are components of an angular momentum vector

A,B,C,D,E,F are components of an inertial tensor, and

A, B, C are moments of inertia

D, E, F are products of inertia

The application of equations (1-4), (1-5), and (1-6) imposes

certain practical constraints. First, it is desirable to choose the
coordinate frame so that the components of the inertial tensor (A, B,
C, D, E, F) are constant. This can be accomplished for a projectile
of constant mass by causing the coordinate frame *o be fixed in the
body of the projectile. This is the primed coordinate frame x', y',
x'). Writing equation (1-4) relative to the ?rimed coordinate frame,
gives

m[u' - v'r' + w'qI] - X1 + XI
G Force Equations

m(ý' - w'pt + u'rt] = Yt + Y1 Relative to (1-7)
Body Frame

m[ý' - u'q' + v'p'] - Z' + Z
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The angular momentum equations, (1-6), become

i -F B' -] (1-8)

L hý -E' -D' c'JLr

where the coefficients A'. B', C', D', E', F' are constants.
Differentiating (1-8) gives

A I --F' -E'

hi -F, B' -D' ' (I-9)

[E' -D' C' ILh3 -J L J L -

Let the matrix be inverted so thatA -F rE E - t -I -
-F ' BI -D'] -F'BI -D' 1 -10

E EL -D' CJ L- -' -' J)
Then,

SL 3-11)
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Combining (1-11) and (1-5)

[s' * E- [L' + h'r' - h~qv

M' + h~p' - hir' (1-12)

Lr N' + hjq' - hipj

Introducing the notation

a' = X'/rn

*'=Y/ (l-13)

CI aU I/a' Z'/m

The equations are:

1' - v'r' - w'q' + a' + (X6/m)

' w'p' - u'r' + b' + (Y6/m) (1-14)

-' u'q' - vIp, + ct + (Z1/m)

E 1  L' + h r' - h~q'

qI M, + h~p' - h r' (1-15)

N' + hiq' - hip'

Equations (1-13), (1-14), and (1-15) are the most general nonlinear

equations of motion which will be considered.

Second, this most general case can be constrained by imposing a

rotational symmetry about the x' axis. The full significance of this
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symmetry can best be implied in terms of the inertial coefficients.
The inertial coefficients are defined as follows (see reference [3],
p. 139). A( 2  ,2

A' f-y' + z' )pdT

B' - j(z'2 + x 2) dr

C' - f(x'2 + Y' 2 )pdT (1-16)

DI M fjy'z' pdT

M f-.z'x' Pdr

F' - fx'y' pdT

where
P - density
dT - volume increment

Let the x' ,y' ,z' axes (the primed coordinate frame) be aligned
initially to coincide with the x,y,z axes. Then, let the x' axis
and the x axis remain coincident while the primed coordinate frame is
spun about the coincident axes. The inertial components about the
unprimed axes will generally not be constant. However, they will
be constant provided the coincident spin axes; i.e.,x' axic and
x axis, are axes of summetry. Under these conditions

A is constant
B- C (1-17)

D-E-F-O 0

When these axial symmetry conditions are satisfied, the equations of

motion can be written in the following form:

U - yr - wq + a + (XG/m)

S- wp - ur + b + (YG/m) (1-18)

w - uq - vp + c + (ZG/m)

1-8

II I ' * i " i " " l . . . - . . . . i . .. . . . .. ... .i * " i - i I



h W Ap'

h2 - Bq (1-19)

h 3  Br

P - (L/A)

- (M + h 3 p - hir)/B (1-20)

r- (N + hIq - h2 p)/B

Note that the angular momentum component (hl) depends on the spin rate
of the body (p') and is independent of the spin rate of the unprimed
coordinate frame (p).

The usefulness of equations (1-18) through (1-20) depends on
whether the force components (X, Y, Z) and the moment components
(L, M, N) can be expressed conveniently in the unprimed coordinate
frame. They can be and the manner of doing so has been described

by Charters [1], pp. 27-33. According to Charters:

"... It may be concluded, therefore, that the aero-
dynamic coefficients are invariant with respect to
rotation of coordinate axes about the axis of
symmetry. Consequently, the y and z axes may be
oriented at will around the x axis, without regard
to the orientation of the missile about x, since the
aerodynamic coefficients are solely functions of the
missile's external shape (and such non-dimensional para-
meters as Reynolds and Mach numbers) and it has been
shown that the aerodynamic coefficients do not change
with orientation of the missile in roll. In fact,
the missile may be allowed to spin about the x axis

with respbct to the y,z axes and the aerodynamic co-
efficients will be unaffected."
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Charters defines three sets of coordinate axes. One set, which
he calls "earth axes" correspond to the inertial coordinate frame,
X Y Z , A set, which he calls body axes, corresponds to our

coordinate frame fixed in the body, x', y', z'. A set, which he calls
pseudo-stability axes" corresponds thus far to the as yet unnamed

unprimed coordinate frame, x, y, z. Charters points out that the
pseudo-stability axes may be oriented at will about the axis of
rotational symmetry. The pseudo-stability axes are commonly referred
to as aeroballistic axes.

It should be pointed out that Charters pseudo-stability axes

are not associated with a physical body. Thus, the magnitude of the
angular velocity about the x axis can be specified arbitrarily and
does not have to satisfy an equation of dynamic equilibrium.

A coordinate frame will be associated with the canard assembly,
or fin-frame, of a controlled spinning projectile. This will

require an equation of dynamic equilibrium which is introduced in the
following paragraphs.

The geometrical relationship between the primed and unprimed

coordinate frames is the sume whether or not the unprimed frame is
physical. This relationship is shown in Figure (1-2).

One useful treatment of the unprimed coordinate frame is to
set its spin rate (p) equal to zero. The motion of the projectile
is then described relative to a non-spinning coordinate frame and the

equations are

u *vr - uq + a + (XG/m)

v *-ur + b + (YG/m) / (1-21)

a uq + c + (ZG/m)
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(1) The primed coordinate
frame is fixed in the
body.

x -x (2) The origins are co-
incident.

(3) The Ox and Ox' axesare coincident.

//

y

iY

z', z = *(0) + ft (P'-p)dt

a o
b - b'o cosU - co' sinO

c - b' sirO + co' coso0 0

q - q'coso -- r'sinO 'I

r - q'sino + r'cosuc

Figure 1-2. The Relationship between the Primed and Unprimed

Coordinate Frames
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p -0

P B L/A

q- (M - Ap'r)/B (1-22)

r -(N + Ap q)/B

In order to associate the unprimed coordinate frame with the

aeroballistic frame, first the spin angular momentum is defined as

hI a A Bp + AFPF (1-23)

It is assumed that the fin-frame will have axial symmetry, just as the
body does, and that its products of inertia are zero. Equating the
rate-of-change of the spin momentum to a total rolling moment,

ABj + AFpF L (1-24)ABP

However, another physical variable is required and this is the torque,

T, between the body frame and the fin-frame. Let

A~p7 u Lp, +T
(1-25)

ABi4 - LB - T9

where
L - aerodynamic moment applied to the fin-frame

LB- aerodynamic moment applied to the body-frame.

It can be seen that equations (1-25) satisfy equation (1-24), provided that

L - LF + LB (1-26)
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The equations which have been developed here are summarized in
Table 1. Three sets of equations have been identified:

(1) Six degrees-of-freedom expressed in body axes

(2) Six degrees-of-freedom expressed in aeroballistic
(pseudo-stability) axes

(3) Seven degrees-of-freedom expressed in aeroballistic axes

The first set is most general but it presents a number of algebraic
and computational difficulties. The second set introduces the
constraint of axial symmetry and a number of approximations which
are convention for aeroballisties. However, it does not include an

. explicit description of the stabilized and controllable fin-frame.
This second set has been included here in order to show a relationship

to conventional aeroballiStic theory. The third set of equations
introduces a seventh degree-of-freedom: the spin of the fin-frame
independent of the body. This seven degree-of-freedom model will be
the basis for most of the theoretical design considerations for
controlled spinning projectiles.
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SECTION 2

COORDINATE TRANSFORMATIONS

Three dimensional Cartiesian vectors transform according to the

scheme: B] c LEE Ec 12[E ;1 (2-1)vc21 c 22 c 23/ v

_ c31 c 32 c 33• w0

The inverse transformation is:

UJ 1 Cl C21 c31 U (2-2)

V 0c12 c 22 a 32

w 0c13 c 23 c 3 3_j _

and the transpose of the matrix is also its inverse. The matrix
elements, cij, are called "direction cosines" and are capable of
physical interpretation.

The properties of these coordinate transformations are most
familiar to engineers in terms of Euler angles (gimbal angles).
Such a presentation is given in Charters [I], and none will be
repeated here. A less familiar treatment of the coordinate trans-
formations in terms of the components of a rotation vector is given
in Webster [4] and will be discussed here.

The rates-of-change of the direction cosines depend on the
present values of the direction cosines and components of angular
velocity. The complete relationships are:
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Cl!- c 2 1 r - c 3 1 q

12 c22 - c 3 2 q

13 " 23r c 3 3 q

21 0 C3 1 P 'C1 1 'r

C2 2  c 3 2 P " c 1 2r (2-3)

C2 3  M c 3 3 P - c13r

31 0 Cl1q - C2 1 P

C3 2  a c 1 2 q - c 2 2 P

33 1C3q - C2 3 P

Each rate-of-change must be integrated:

cJ . cij(O) + ft ij dt (2-4)

The physical significance of the direction cosines can be

demonstrated as follows. Consider a unit vector in the direction

of the x0 -axis. It can be expressed an a column vector:

y [ L ] (2-5)

This vector will transform onto the unprimed coordinate frame in

accordance with equation (2-1).
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7x7 c1  FilmC
H K 21 C 22 2 Ic F2] (2-6)
LZI c31 nle L2 e 3 0l

Thus, c1 is the cosine of the angle between the x°-axis and the y -

axis; c•21 the cosine of the angle between the x0 -aaxis and the y-axis;

and c'3 is the cosine of the angle between the xo-axis and z-axis.

The argument can be repeated using vectors

[x [0 a unit vector along the y0-axis

6 .J 6-o
xo - a unit vector along the zo_-axis

Jo

in order to interpret the significance ol the remaining ca.

We have chosen a mnemonic notation for the vector components

because we have found that it facilitates learning and remembering
the notation. However, there is some merit in a pure index notation

and such a notation will facilitate the present discussion.

The equivalence of a mnemonic notation and an index notation for

a right-handed coordinate frame is shown in Figure (2-1). The axis
are assocated with the indices 1, 2, and 3 and the same symbol is

employed for each axis or for each vector component. The same

symbols are employed for each unit vector and the unit vectors are

distinguished froýn one another by the numerical indices.
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w

p I

z x2 X3

R-ix + jy+ kz X x IXe1 + x 2 F2 + x 3 C3

n- ip + jq + kr - 1 1 + W•2 e2 + w•

(ijk are unit vectors) (C1c2 C3 are unit vectors)

MNEMONIC NOTATION INDEX NOTATION

Figure (2-1). Equivalence of Mnemonic Notation and Index Notation
for a Right-Handed Coordinate Frame
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The rates-of-change of the direction cosines can be expressed

in the index notation:

C1 1  = C2 1 3 -C 3 1 2

C1 2  ' c22w3 - c32"2

c13 c 333 - c3342

l •21 = 31wI2 11 c1•

c22 C c32 W2 - 12 Wi
C23 C 33w2 - 13Wu (2-7)

c31 C1 1 4 2 - C 21w,

•32 C12w2 - c22wI

c 3 3  0 c 1 3 w2 - C2 3 • 1  j

Thus, the general expression is:

Cki " CIk+l,iwk-i Ck-l,iwk+l (2-8)

where k+1 and k-i are to be evaluated with respect to the following
truth table

k k+1 k-.
1 2 3
2 3 1

3 1 2

The physical basis for equations (2-3) or (2-7) can be demonstrated

by considering small rotations instead of rates-of-change. That is
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f fpci - f w~1dt

e - fq~dt - fw~dt (2-9)

tP f rct - fwdt

The effect of these small rotations is to change the projections of

a unit vector in the inertial frame, x• - 1, on the axes of the un-

primed frame. The effect of these changes is depicted in*Figure 2-2.

x

X2 04

K2 0

x3

The Unprimed Frame Rotates Through Small Angles O,e,.L

Figure 2-2. Physical Basis for the Change in Direction
Cosines Caused by Small Rotations.
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and their magnitude can be written by inspection. Thus

ACIj = C2J - C3j e

AC2 J C - C (2-10)

& C31 M Clie - C2 j€

The several vectors described in Equations 1-3 can be transformed

from one coordinate frame to another according to the following

schemes:

abTll a12 a1 3

' a a2 1 a2 2 a 2 3  ; -Aoe (2-O.1)

WT- a 3 1 a3 2 233 0

.U' b1  b1  b1  U0

-11 2 13022 b 2 b-Cb7V (2-13)

[:I b~l032 033J

" d1 1 C1 1 3  u
d2 1 c2 2 d2 3  v ; U" 0 U (2-14)

_-01 '3 '33 "w

I f dll d12 d13

'V"II d 21 d22 d23 v i;U ••(2-14)

I'
wi d3 1 d3 2 d3 3  w
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SECTION 3

THE SEVEN DEGREE-OF-FREEDOM MODEL

The seven degree-of-freedom model for a controlled spinning

projectile has been derived in Section 1. However, it will be helpful
to restate the equations here:

a - X/m

b - Y/m Accelerometer (31)
Equations

c " Z/m

u vr - w'q + a + (XG;/m) oc
•• | Force

v -ur + b + (YG/m) Equalibruim (3-2)Equations

w uq + a + (ZY/m) E

hi = ABpi + AFPF Angular

h2- Bq Momentum (3-3)
Equationsh3 - Br

p- (LB -T)A
- (LB + T)/AF 

Moment
"F Equilibrium (3-4)

q- (M - h 1 r)/B Equations

r- (N + h 1 q)/B

These equations are expressed relative to the aeroballistic frame.
The seven degrees of freedom are u, v, w, pF' pB, q and r.

A number of details about the seven degree-of-freedom model
must be clarified. These include:
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(1) Transformation of the velocity components to the inertial
frame from the aeroballistic frame.

(2) Transformation of the gravity components to the aeroballis-
tic frame.

(3) Evaluation of the aerodynamic forces and moments (X, Y, Z,
LF, LB, M, N).

Equations (3-1) through (3-4) describe the motion of a controlled
spinning projectile with respect to the aeroballistic frame. The
orientation of the.aeroballistic frame in inertial space is determined
by the angular velocity vector (•) where

qD (3-5)

These vector components are used to generate the transformation
matrix as follows:

11 "2 j2 1 r - c 3 1 q

ý12 = 022r - c 3 2 q

c 1 3 ' c23r - c 3 3 q

C2 1 =-cr1 1

a22  -c12r (3-6)

C23 -c13 r

631 = llq

; 3 2 - c 1 2 q

33 c1 3 q
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and these derivatives are integrated as follows

t l
Cjij(O) + dt (3-7)

0

The transformation matrix is used to transform the u, v, w
components onto the inertial frame:

Salc21 c31 (3-8)

v 1 c12 c32

Components of wind aloft may be transformed onto the aeroballistic

frame as follows:

131 c12 13d UTw
cl C U0~ (3-9)[:~ 21 ~223 vWI

Also, the weight of the projectile can be transformed from the inertial
frame to the aeroballistic frame

Lxfl 01 H 12 c13 (-0
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It will be convenient to divide equation (3-10) by m and to let

g = W/m

gx " XG/m
- X 0 /zn(3-1)

gy YG/m

gz ZG/m

then

9x 11 012 01

gy C21 c 2 2 '2 0 (3-12)

C31 c32 c 3, J

Consistent with equation (3-12) it will be convenient to rewrite

equation (3-2) as:

- yr - wq + a + C

v -- ur + b + gy1 (3-13)

w uq + c + gz

The velocity components, u°, v°, w°, are integrated to obtain
position coordinates as follows:

x 0 x0 (0) + ftuodt

y 0 y0 (0) + ItvOdt (3-14)

z z°(0) + ftw dt
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3 TITe aerodynamic forces and moments are expressed in the following

forms

F •C

M PV 2Sd C
2

where

F - force component

M - moment component
C - dimonsionless coefficient

*pV2  dynamic pressure
S w reference area

d - reference length

The complete sets of forces and moments which are required are
X = (Pv 2s/2)cx X

y - (pV 2 S/2)Cy (V (3-15)

z - (Pv2S/2)Cz

2
LF - (pV 2Sd/ 2 )CLF

L B - (pV 2Sd/ 2 )CLB

M - (pV2Sd/ 2 )CL

N - (pV Sd/2 )CN
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where X, Y, Z are forces in the %, y, z directions, respectively, and

L. M, N are moments about the x, y, z directions, respectively.

The moments are described by the adjectives rolling, pitching, and
yawing, respectively, but no similar adjectives have been developed

for the forces.

The subscripts, B and ( )F, have been introduced to distin-
guish between the rolling moments which acts on the body (B) and the
rolling moments which acts on the fin frame (F). The corresponding
moment coeffizients are CLB and CLF' respectively.

It became common practice to expand the dimensionless aerodynamic
coefficients as a series expressed in terms of a number of dimension-
less variables. The more important dimensionless variables are:

0 angle-of-attack (rad)

" side-slip angle (rad)

(PBd/2V) dimensionless roll-rate of the body
(rad/see)

(Prd/2V) dimensionless roll-rate of the fin frame,
(rad/sec)

(qd/2V) dimensionless pitch-rate

(rd/2V) dimensionless yaw-rate

6 control deflection (rad)
A cant angle (rad)

The coefficients of each series are partial derivatives of the dimen-

sionless coefficients with respect to the dimensionless variables.

However, it has not become common practice to employ a partial
derivative notation. Instead, a notation scheme with subscripts is
employed. The fo.lowing conventions will be adopted for specifying
the non-dimensional aerodynamic coefficients ([13, p.23).
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C - -CA

C - CyB + ÷ y6 a z

C- -Cz a a CZ U ay

(pi

CL CB + CB, A~ (3-17)

C rC~~ + +C d) + C~ (4pB ) + C ay

C N no o+C mr( ) 4Cnaxp +Cn

The coefficients of the dimensionless terms on the right hand sides
of the equations are called aerodynamic d6rivatives and are dimension-
less. The following relationships are valid because of rotational
symmet•ry.

cs -C

C no -Cm MC

Cnr Cmq (3-18)

C np CMoCncp - Cmsp

Cn6 - Cmd

Thus, a total of 19 aerodynamic derivatives of which 12 are independent
will be used. The independent derivatives are listed below, along
with an alternative notation.
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C CX axial force

Cza CZA normal force due to angle-of-attack

C z CZL normal force due to control deflection

Cma CMA moment due to angle-of-attack

C CMQ damping momentmq

Cnap CNAP magnus pitching moment

Cm6  CMA moment due to control deflection

C p CLPF fin rolling moment due to rate-of-roll

C• FCLAF fin rolling moment due to cant angle

C CLPB body rolling moment due to rate-of-roll

CF CLBF dihedral effect

C B AB CLAB body rolling moment due to cant angle

The symbols in the second column are mnemonics which may be useful in

labelling computer printouts. (The derivatives have been listed here
in the order in which they are introduced in simulation modules.)

The expressions for the aerodynamic derivatives become:

CX a -CA

Cy W -C6za + Cz6 6z

Cz - -Cz 01 - Cz6 y

C - () + CA6 ( + (3-19)CLF i~ L z• AF + C•8 ad•

6B (ý jd- B (a +)C d) tpi+ + CA6
CMCma m Cq P~ + Cnap a V ~) MIC6 

6y

Id\ (Pid
CN -C + Cmq + Cnp + C
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The dimensionless aerodynamic derivatives are functions of Mach
Number, M. For the present these functions will be treated as second

degree polynomials, e.g.,

y = a 0 + aM + a2 M2  (3-20)

The following equations, express V, a and 8 in terms of the state

variables u, v, and w, and the wind's components Uw, v w and ww.

V2 (u + uw) 2 + (V + Vw) 2 + (w + W)2

a 8tan- w (3-21)

-tan- w

\J(u + uw)2  (v + vW

The most important equations for the seven degree-of-freedom

model are summarized in Table 3-1.

Fin deflection signs refer to those panels whose rotation axis
when aligned with the positive y or z axis and are consistent with
positive rotations about these axes. This applies to either panels
which deflect together (6) or panels which deflect in opposition (A).
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TABLE 3-1

SUMMARY OF EQUATIONS FOR THE SEVEN DEGREE-OF-FREEDOM MODEL

a = X/m

b - Y/m AccelerometerEquations
c a Z/m

u vr - wq + a + g
Force

-= -ur + b + gy Equilibrium

- uq + c + g~ j Equations

hI w Agi• + ApFF Anur

- A~p ~ ~Angular

h2 = Bq Momentum
h3 w BrEquations

hS Br

. (LB-T)/AB

6F -F(L*T)/AF Moment
a= (S-hlr)/B Equilibrium

Equations

- (N+hlq)/B

X - (PV 2 S/2)Cx
2

Y - CpiV S/2)C~Z - (pV2 S/2)Cy

Z = (pV2 S/2)Cz Aerodynamic

M (pV 2 Sd/2)CLF Force & Moment
LF = (P Equations
LB - (PV 2 Sd/2)CLB

M - (PV 2 Sd/2)CM

N - (pV 2 Sd/2)CN
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TABLE 3-1
SUMMARY OF EQUATIONS FOR THE SEVEN DEGREE-OF-FREEDOM MODEL (Continued)

CX = -CA

Cy W -Cz a + Cz 6zpp~
C - -CB t + CS a

CLB " Cp X4 C B

M -C (q\+Cj +

CM "cm a C mq M + Cnap y U16 yCN a-C ma +C mq(d\(i

detail can be embodied in a single software module which can be

represented by the block diagram shown in Figure 3-1. This can be
done by partitioning the model, into the following parts:

(1) Acceleration due to gravity I

(2) Non-dimensicnal terms

(3) Atmosphere
(4) Aerodynamic forces and moments

(5) Equations of motion

(6) Coordinate transformation and intergration
(7) Direction cosines

This realizction is described in the appendix as the realization of
Module Number 69080 "Controlled Spinning Projectile". The appendix
also describes (he realization of Module Number 69220 v7-DOF Projectile

Including Seeker and Canard Deflection".
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CONTROLLED

SPINNING

PROJECTILE

a

6
y b

z C

T

AB u

V

PB
p

q

r

x0

yo

zo

1 1

Figare 3-1. Block Diagram Representation of a Seven
Degree-of-Freedom Model of a Controlled
Spinning Projectile.
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SECTION 4

THE FIVE-DEGREE OF FREEDOM MODEL

There are at least two ways of simplifying a mathematical model.

One way is by an arbitrary introduction of simplifying approximations.

Another is by a careful application of perturbation theory. Both
ways will be developed here.

The first way (arbitrary introduction of simplifying assumptions)
can be approached as follows:

(1) Assume time histories or constant magnitudes for u.and for
pj and ignore the state equations for a and

(2) Evaluate the remaining equations using the assumed magnitudes
for u and pl.

(3) Discard terms whose magnitudes are judged small enough
to be ignorable.

This technique can be pushed so as to obtain linear equations, but
it is not necessary to carry it that far.

The equations for the five degree-of-freedom model can be obtained
by deleting the appropriate equations from (3-1), (3-2), (3-3) and
(3-4) which define the seven degree-of-freedom model. Thus

b - Y/m Accelerometer
c - Z/m3 Equations (4-1)

- -ur + b + gy Force
Equilibrium (4-2)S- uq + c + 9z Equations
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i:

h- = ABpB + AFPF Angular

h 2 - Bq Momentum (4-3)

h= Br j Equations

- (L+T)/AF Moment
q- (M-hIr)/B Equilibrium (4-4)

- (N+hlq)/B J Equations

Equations (4-i) through (4-4) are not linear. However, they can

be made to approach linearity by the following approximations:

hAPF - BrpF 0

h2 pF - Bqp 02PF ' F(4-5)
h1r - (ABPB + AFPF)r f(ABPP)r

hlq - (ABPB + AFPF)q - (ABPi)q

Substituting (4-5) in equations (4-1) through (4-4) gives:

b - Y/m

0 - Z/m

v- -ur + b + g

S= uq + c + z(4-6)

" (L+T)/AF

qI a (M-A BPjr)/B

- (N+ABPBq)/B

It remains to treat the force and moment terms (Y, Z, L, M, N) in a
consistent manner,
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Note that the terms rpF and qPF have been dropped because they

are second order quantities. The variables v, w, PF, q, and r are

expected to be small, so their products are second order quantities.

The product terms have not been dropped because p. - 0. The magnitude

of PF must be evaluated and the consequences of its being non-zero

must be included. a

The required force and moment equations can be selected from

equations (3-15), (3-16) and (3-17).

Y (P V2 S/2)Cy
Z M (P V2 S/2)Cz

2
L w (PV 2Sd/2)Cu i

M - (P V2 Sd/2)CM

N - (P V2 Sd/2)CN N (4-7)

Cy -- Cza8 + C Z, az

Cz - C1 - Cz 66 y

- F +~d CFA 87+ 6 a ~

C MM m 0 + C mq (Qd) + C nap $ (V) +CU

Equations (4-7) can be used to express the forces and moments in the

following form (see equations 3-21).
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Ii

Y =- (V + v +) a* 6

Z -L (w + ww) +

@L
L - M ÷ (4-8)

3M +. q+. (v~v) 3M ._1.M (w + wW ) + E- q + -M v vw) a
aw w q a 7 Y

3N aN NNN M (v +v ) + r + (w ww) + w

Of course, these partial derivatives are not non-dimensional.

i.

Equations (4-8) have been obtained by neglecting the product terms

8%y and ad and by employing the following approximations (see
equations (3-21).

V + W

(4-9)
W + 4W
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The expressions for evaluating the partial derivatives are:

2z a - PVS
A ~ 2V zct

V2

-5 -57z I cZ 6

BL ~VSd 2  F

-
2Sd (4-10)

~ rnc&

a - aN PVSd 2 c
Tq F 4 rnq

am aN - PBdp

am aN .2 VSd
TF 2 C6

Substituting (4-8) into (4-6) giveu

b - (aY/Bv)(v + v. ) + (3Y/38)6 I/rn

C-((az/aw)(w + w ) + (aZ/Brs)6 I/r

v -r (4-11)

W-uq + 0 +g

jF [ (aL/app)pp + (aL/aAF)AF + TI/AF

4 (aN1/aw)(w+w )+(aM/aq)q+(aM/av)(v+v)

+ (aM/a6)6~ - A~pjr)/B

r' - (aN/3v)(v4.v w)+(aN/Br)r+(BN/aw)(w+W~)

+ (aN/aa)6z + A~pjq1/B
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v*(-u) r + A (.) (v +~ v) +s B (y\ + gM (-V M 77 z y

w*(U) q + ( yK) (w + ww) + qz 6y + g~

1 (Ar) PF +(1 BL ) 4+ T

B ( aw) (w~w B Tq" IN TVy ( (v+v ) (4-12)

+ am) ryAP

r - ~)(V+V )+I r + (~i)(w+w W)

+ (1 N) 6 z + -BrB q

We introduce some more notation

m mav m Dw wC

-V r a u
r q

PT 1

T A7  pDSd 2PI
1 a~m 1 IaN. B C

Qv B ay 11w Rw -4-n ap
I am 1 allV~

Q 1 LM IIN R *Vqld 2 C
q B ýq ~I r 4B mq
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The equation for ýF is quite independent of the other equations.
It will be convenient to write our equations in the following form

%1F P p PF + P, AF + PT T (4-14)

V v 0 0 Vr 0 V z1 0 Vv 0
w 0 Ww Wq 0 + TV y 0 0 1 0 Ww 6z

* (4-15)

q l'v w Qq Qr Q 0 0 Qv Q,, gy

r V Rw Rq r 0 R6 0 0 RV Rw z

Ww

b V 0 00 V 0 0 0 V 0 6
z

a 0 W 0 0 w 0 0 0 0 / I

wV I

~ 01/VO ~ + y
0 I/V0 0 q 0 0 0 00 / 9

B 1/VO 0 00 r 0 0 0 01/V 0 9

ww

The five degree-of-freedom model can be represented by a block
diagram such as that shown in Figure 4-1.

Equations (4-14) (4-15) and (4-16) are written with respect to the

aeroballistic coordinate frame. The control deflections, 6 and 6.,
must be generated in this frame or transformed from the fin frame.

However, the gravity components and the wind components must be

generated in inertial space and transformed onto the unprimed frame.
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5 DOF MODEL OF A
CONTROLLED

PROJECTILE

V
z w

sy p

vw r,
ww

vv
T

w

p

q

r

1~

Figure 4-i. Block Diagram Representation of a Five
Degree-of-Freedom Model of a Controlled
Projectile.
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The details of the five degree-of-freedom model can be realized
most easily by realizing a four degree-of-freedom model first. The
next section (section 5) should be read at this point and forms the
basis for the discussion which follows.

The realization of a five degree-of-freedom time-variant model of

a controlled projectile is shown in Figure 4-2. This model is a

combination of the modules which comprise the four degree-of-freedom

model plus additional modules to simulate the moment equilibrium
about the x-axiS. The spare element in the time-variant element

generator can be used to generate the magnitude of pb. Also,

advantage can be taken of the fact that Wq - U.

A five degree-of-freedom time-invariant model can be realized

as shown in Figure 4-3.

i
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SECTION 5

THE FOUR DEGREE-OF-FREEDOM MODEL

The four degree-of-freedom model can be obtained readily from

the five degree-of-freedom model by setting p p " 0. Then

b - Y/m Accelerometer

c - Z/mJ Equations (5-1)

v--ur + b ÷ ) Force

S uq + c + g Equilibrium (5-2)w uq÷ c gzEquations

hi w ABPB AngulIr

Momentum

h2 w Bq Equations (5-3)

h 3 n Br 9
| " •- (M - hlr)/B Moment

S(N - hl)/B Equilibrium (5-4)

S(N +. hJq)/B

These equations will lead to equations which are equivalent to

equations (4-15), (4-16) and a subset of (4-13). These equations are
rewritten here so an to have a compact summary.

Vv " w""• za

_Vr W Wq u
* W - 2

- V2 5
"W z zy

QV w pS pi C
4B n~p

Q -ý
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Qq R VSd2 Cr B mq

ABPB-Qr = + Rq + (5-5)

V 0 0 V1  v 0 V 1 0 V 0

0 Ww Wq 0 w W 0 0 1 0 W

- Q Qq Qr q Q o 0 0 (0-6)

Rv Rw RR r 0 R 0 0 Rv Rw

vw

ww

b Vv 0 00 v 0 V80 0 Vv 0z y

a 0 Ww w + W6  0 000W

0 1/V 0 0 q 0 0 0 0 0 1/V gy (5-7)

8 i/V 0 0 0 r 0 0 0 0 i/V 0 z

vw

ww

Equations (b-6) and (5-7) are linear, but the matrix elements +may be

time variant.

In order to accommodate the time-variant nature of the four

degree-of-freedom model it will be organized as shown in Figures 5-1,

5-2 and 5-3. Theitime-varying coefficients are the magnitudes given in

in equation 4-5. These coefficients can be determined in a 7 DOF sim-

ulation and then expressed as polynominals. Quadratic polynomials

will be reasonable at this time.
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Quadratic polynomials can be generated by module number 8130.
Ten of these can be combined in a single module as is shown in Figure
5-4.

The realizations of time-variant and time-invariant 4 degree-of-

freedom models are described and compared in Figure 5-5.

I-
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SECTION 6

SYSTEM DESCRIPTIONS EMPLOYING EXACT EXPRESSIONS FOR THE COORDINATE
TRANSFORMATIONS

The approximate five and four degree-of-freedom models can be
employed in conjunction with exact or approximate expressions for the

coordinate transformations. The approximate expressions are more
eonomical of computing power and permit linearization and, therefore
they will be used whenever possible. However, the exact expressions
will be useful for error control.

The complete description of the projectile, which parallels.that
presented for the seven degree-of-freedom model (see Section 3) is
represented in Figure 6-1.

The target can be represented by the block diagram shown in

Figure 6-2.

The relative motion of the projectile and the target is described
by the following equations:

o 0 0Au -U-u P

T P

Av o ,o (81
T P(

S•uw - uT -wp
o o o

0 0 0Ax *x -xPT P w

zo o 0o
T P

-- 2 -+ 2 -- 2 (6-3)
A2 x° +AyO + Az° 63)
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Rk Lx o ~~d AXo + Ay o d AyO0 + Az o dA 64-I Ax0 d: ~ Od"• •O Od

ývo d 0 y 85

d 0

Lw0 o d AZO
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* . Then,

RA - 6X° 6u, + Ay° Av° + Az° Aw°

R -- •nuoV + R, -- 6w, (6-6)

A seeker mounted in the aeroballistic frame (unprimed coordinate frame)
will develop boresight-error angles which depend on the position of the
target relative to the projectile, resolved onto the unprimed

coordinate frame. Thus,

- C AXo (see Appendix A) (0-7)

PAx & Cil C12 013 AX0

021 022 023 AyO (6-8)

Az c31 032 '33 Az°

The boresight-error angles will be

x tan- 1  --

(6-9)

X * tan-(1.z Ax

The boresight-error angles measure the relative position of the

target and projectile, but they also include the effect of attitude
change of the projectile. This is not obvious from the exact
equations; but it will be obvious from the approximate equations which
are developed in the following section.

The relative motion of the target and the projectile can be
repres-anted by the block shown in Figure 6-3. Thia block also
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Figure 6-3. Block Repreaentlng the Relative Motion of Target and
Projecti~e arnd the geometric processing performed by
a Strapped-Down Seeker.
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represents the geometric processing done by a strapped down seeker
and generates the boresight-error angles, Xy and X z These functions

are valid for the 7-DOF, 5-DOF, and 4-DOF models.
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SECTION 7

SYSTEM DESCRIPTIONS EMPLOYING APPROXIMATE EXPRESSIONS FOR

THE COORDINATE TRANSFORMATIONS

System descriptions employing approximate expressions for, the

coordinate transformations permit linearization in a manner comparable

to that which has been introduced for the four and five degree of

freedom models. Such treatment permits the linearization of the

complete interception problem. The linearized state-space equations

for the physical plant are:

*(t) -A(t)2S(t) + B(t)u(t)
S(7-i)

where

x(t) - a state vector

Z(t) - an output vector 0
U(t) - an input vector

The state vector will include the following terms:
%P

Pr angular velocity of the fin frame (rad/sec)

4 translational velocity (ft/eec)w P

q angular velocity (rad/sec)r)

7-1
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rotations (rad)

Y translational perturbations (ft)

6 control deflection (rad)

The output vector will include the following terms:

b 2Stranslational acceleration (ft/sec )

O' • angle-of-attack (rad)

aB side-slip angle (rad)

I.relative position components (ft)L Az

y I look angle componeyits (rad)
kz

The input vector will include the following terms:uo0
w

v wind components (ft/sec) A fin cant angle (rad)
w0

w

.T target maneuvers (rad/sec)

7T
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The approximate expressions developed in this section will

employ a coordinate frame which is fixed to the cruciform canards

(the xF, yF, zF). This convention makes it Possible to include the

effects of small perturbations, ý, in the roll angle of the canard
frame, The perturbation equations for the direction cosines are

similar to those which have been developed in equations (2-1Q).

f J •2* - f 3 je 1
a2j = f3j€ f - j (7-2)

fa3j - f 1 je - f 2 jo

where

6 a ~(0) + ft Fd
0

e -e (0) + t q dt (7-S)
0

~ p(0) + rtr Fdt
0'

The resolution of gravity onto the fin frame is described by:

F Fi ,f]
6gy Y f2+ f22 I . Af22 f23 + 2 g f33 23

LWZ AFJ L 31+ Af I + Af 31 [
31 s. 32  ~32 ~33 33 ~ 33 ~33

The usual practice will be to include the effect of gravity in the

reference trajectory. Then it is only necessary to treat Ag in the
linearized equations. Thus:
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x, 0 "f 3 3  23

6g f 33 0 -f13 6 g (7-5)

L. AgZj f23 f1

The transformation of the wind components onto the fin frame is

given by:

F
"'- 0 2 ' (7-6)

['w f21'3 f22 w ..
wF f31 f32 f3 W

No perturbation terms are included in the transformation

because the wind components are considered to be small quantities.

The velocity components, computed in the fin frame, must next

be resolved onto the inertial frame. Thus:

0 Fup f + f 2 1 ýf " 3 16 f21÷ 3 1€ +f l310 f fll - f2 1f up_

P f 1 2 + 2 2 'f 3 26 f 2 2 f 3 2 € -f 1 2i f 3 2 +f 1 2 0 - f 2 2 0 v- (77)

p 13 f 2 3  f 3 3e f 2 3  f 3 3 0 -f 1 3 $ f 3 3 +f3e -f23€ [wp

Expanding equation (7-7) and remembering that vF and w' are smdll

perturbations:
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P il 1 21 31 p

"Vp f12 f22 f 3 2  v + u F (7-8)

w,, 0f f fW F - F
L."PJ L. 13 23 33 3 P2 .

The target's velocity can be specified so that v - U. Then the

target's velocity can be resolved onto the inertial frame in a similar

manner and:

F0 a a a U T

Uý- 11 21 31 T

VT a12 a22 a32 Ua.T (7-9)

w0 a a a T
WT 13 23 33 +aU T " T

The position coordinates of the target are:

0 0 + T

S(O)(7-1)
t T T~ ( 1 2 + a2T- alS2T~d

. 0 '.AZ 0/(0) + t+ • vT_

Yt. •,.IT' JU, (a12 . 'v a22 -, .. a32T:_ (7-10)o.

T 0 0 T I Oft (a13 + 2 31PT - a33 T~d

and the coordinates of the projectile are:

-(7-11)

0 (0) + eFFF UpJ dt
1P ~ U l Lp+ f2l (V'p + Up ) + f3l (wFP - Fpe

y 0=y0(0) + f t f u F + F v + up* ) ,jwF dt

0 0't F
* (0) + fJ i 2  v + f3  (w~ -ue jdtl
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The relative position components of target and projectile, defined
in the inertial frame are:

^X0X0 - X0 x -- axAx T - p

0 AY 0 - y" asy0  A AO (7-12)

0 0 0 z o
LZ° a Z- T Z A

where

(7-13)

0 x 0 *O x(O)-x,(O)+ft (a U T_ f U4P dt+J Oft J a2 4 TL1T dt
Lx T P O 1T 11p (a2l*T-as 'T) t

0z - J_,~oO r tF M T
Ay 0 7 (O)-Yo(O)+f ( 1 2 - 2 uý) dt+Jtu (. 2 JTa 2 T dt

A z Tz (0 JZP~o+ o (al3u T 13uP) otrJ T (a23*ST- 33 T d

and

&X Mf [fl (v'p + u1PP + f~ (FP - dt0

AO - 't [ F0

0

It can be seen that the components of AX , AY , &Z are functions

of time, whereas the components of A 4°, AS, AP° are functions of the

perturbations v WF , F and •. These relative displacement compo-

nents must now be transformed back to the fin frame.
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(7-15)
'xF If:ii f12 f 13 f 21ý-f 31 6 f 22-f32' f234'-f33 ax+A

' 21 ~22 ~23 + 3 10 ±1 1 ±ý320-fl2ý '330-'13'ý +yAy
-Z f• f-ff-Oxo+A Zo-

31 32 i33

The right hand side of equation (7-15) expands into four terms which

are treated below, one at a time.

The firse term is:

"[f21z - ±31.e •22. - i 32e f23sJ - fa33e1F"3°7

oI

1 " 3 " 12  f3 34 -f3 13-Ao

2le " : 2 1  f12 e - f 2 22 3 13e ( 723JL'6o
f 07

(f 2 1 "3° + f2 ° +4 f:232° ) - (f3 3° + f3y° 4 f33 0 )

(f 3 1t°0 + f 32  0 ° f3 f13* °)
file -f20'2 -f2 136 f20 S.f1 -30 +

(f Ao + f12i3° + fA3 0)e - (f 2 1 Ax + f 2 2 &J° + f 2 3 Z°I )a

I F¢ [- xFO (7-17)L %0 -0 ~
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The third term is:

-0f tF (v F.+UF (w F uF )d
fi 11f 2 f 13 LX fi 12 3  21 p PP' 31 (W p -ue)d

21 22 23 21 22 ~23 0~ ft [f22 p )+f32 Fw 6-Uf ue )jdt

f f f 6 f31 32f ý ot.[23(VFP+ UFP )+f3 3 (Wp 1 6d
~31 ~32 33 ~ fF ~ ~ e)d

ft(1 21+'1.2 f 22 13 '23) (v4+4 11J+f f31+ 12 32+f13 33)( U8)

ft- 2 '21'2 f22 +'23 '2,)(v,.+' . P-)+('21 f31+f2 2 f32 +f23 33)CPu Y]d

St [f 3 f 1+' 2 f22+ 3 3 '23) 'P 'U'~P 0J)+(f 31 f3l+jf32 '3 2+ 33 33) pw-u1 ]

0

fK( F u dt (-8

(w L;:v Fie) dtj
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The fourth term is:

"f21P - f3le f2 21p - f 3 2 8 f 2 3P - f 3 3 e Axo

fiP _ f 11 f320 - f 1 2 p f 3 3 0 - f 1 3 ý &o (7-19)

AOl
Lfle - f210 f 1 2 8 - f220 213' - L230. L 62 J

The expansion of this term contains only products of perturbations,

all of which can be ignored. Then the expansion of equation (7-15)

is:

Fx FX ~ rj- ~~e 0

Fy - y Az - A-F 1+ oft ( vi + ui )dt (7-20)

Equation (7-20) describes the relative position of the target

*and projectile resolved onto the fin-frame. It can be seen that

this equation encapsulates a great deal of detail which would

require a large amount of computation if the perturbation equations

had not been developed.

It may be useful to identify the terms which appear on the

right-hand side of equation (7.-20), thus:

-F ~F ~F

ax Ay , Az are relative position components deter-

mined during the reference trajectory.

Sprojectiles component of velocity along

the x-axis of the fin-frame.

Vp, Wp, 6, $ perturbations of the projectiles motion
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F F F F
Thus, ýX , , , up, are time-variant coefficients to be deter-
mined from the computation of a reference trajectory while vI WP,

e,.p are state-variable perturbations to be determined from L linear

model of an interception.

The equations developed in this section are an alternative

to the non-linear equations developed in sections (1) through (3)

and in Section (6). All of these sections were developed with the
description of motion referred to the aeroballistic coordinate frame.
This convention has merit in facilitating understanding of complex
motions. However, the aeroballistic frame convention does not permit
a roll-perturbation, 07, to be derived as a small quantity of the

first order. Formulating the description of the motion with respect

to the fin frame permits retaining the roll perturbation as a small

quantity of the first order in a linear model.

Equation (7-20) has been helpful in understanding the roll-

control of the fin-frame. It will also be of considerable importance

when optimal design formulations are undertaken.
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A.1 INTRODUCTION

This appendix describes the details of a moculd which simulates
seven degrees-of-freedom of a. CHAMP projectile. The following
modules are involved in this production:

It
8210 Acceleration due to gravity

57130 Non-dimensional terms with wind
9200 Atmosphere

57110 Aerodynamic derivatives
69050 Aerodynamic forces and moments
57030 Equations of motion

860 Direction cosines

870 Transformation and integration
69060 Controlled mpinning projectile
69220 7-DOF projectile including seeker and canard deflection

Details of these modules are presented in the following sections of
this appendix. Background material on the modular software system

has been published in the CHAMP Phase I Vinal Report, Appendix B.

A.2 ACCELERATION DUE TO GRAVITY (Module #8210)

The force due to gravity can bo expressed conveniently in the

inertial coordinate frame, The components in this frame are:

X 0

o 0 0 (where g * acceleration due to
G gravity) A-I

Z - mg

A-2
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These components can be transformed to the unprimed coordinate
frame by the following transformation:

xG "¢CXQ A-2

xG - l Cll 12 c13 0 - 13 mg

Y - 21 022 023 023 A-3

ZG - 031 032 33 mg 33

XG/m " 0 93 .

YG/m C23 A-4

Zr'/M 033

and equation (A-4) gives the terms which are required in the force
equilibrium equations, (3-2).

This computation can be performed by Module No. 8130 which was

coded directly in MARCO-1O. The module is represented below and

is summarized in Table A-i.
FORCE

DUE TO
GRAVITYC 13 1 ,1 Xo

C23 2 7,2 Y2

C33 Z
---- 3 7,3 ---

8210

Figure A-I. Module No. 8210 Force Due to Gravity.
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TABLE A-1
MODULE NO. 8210 - ACCELERATION DUE TO GRAVITY

Algebraic
L• Symbol Dimensions Explanation

Connections

3 1 c13 dimensionless direction cosine

2 c23 dimensionless direction cosine

3 c 3 3  dimensionlems direction cosine

Parameters

4 1 mg lbs weight of the projectile

Intermediates

7 1 XG lbs force components due to
gravity

a lbs

3 ZG lbs

A.3 NON-DIMENSIONAL TERMS.(Modules #57000 & #57130)

The inputs to thiia module are:

z - the negative of the altitude, h (feet)
u,v,w - velocity components (feet/second)

PFPB,q,r - angular velocity components (radians/second)

The functions of this module are:

(1) to transform z into h--z, which is required as an input

by the ATMOSPHERE module (#9200).
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(2) to derive V, a, and B from u,v,wA.
(3) to derive the non-dimensional terms pFd/2v, PBd/ 2 v,

qd/2v, and rd/2v, where d is a reference length.

By definition:

2. /u 2 +v 2 +w2  
A-5

i a.w w ta-1 W
sin -- ; tan a t a n- A-6

v 24v .U_ +an-i

sin 8 tan BS , B=tan- A-7

The composite module can be implemented with standard modules as
shown in Figure A-2.

This same module can be employed to evaluate the non-dimensional
terms required to describe the effect of winds, provided the
following replacements are made:

u + u+ 1
v ÷ V+vw A-8

W 4, W+WW

where u,v,w are state variables resolved on the unprimed coordinate

frame. UVwwa are wind components resolved on the unprimed

coordinate fra-i.

Now the wind components are best described in the inertial frame,

so that:
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01
U l 1 l2 c13 w

V c c c v 0  A-9w 21 22 23 w

w C c C0w 31 32 33 W0

The transfor-mation and additions have been combined in a single

module as shown in Figure A-3 and Table A-2.

|I

A7
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TABLE A-2

1 " MODULE NO. 57130 NON-DIMENSIONAL TERMS (WITH WIND) DICTIONARY

L M Algebraic

Conne o - Symbol Dimensions Explanations
Conctions

3 1 z ft z position coordinate

2 u velocity components re-
3 v ft/sec solved onto the unprimed
4 w coordinate frame

5-13 Cij dimensionless direction cosines

14 0 velocity components of the
o5 ft/sec wind resolved onto the15 vw t/e
1o inertial coordinate frame16 ww

17 PF rad/sec x-component of angular

velocity of the fin frame

18 rad/sec x-component of angular
velocity of the body

19 q rad/sec angular velocity components

20 r

Parameters

4 1 d/2 ft reference length

Intermediates

7 1 uw velocity components of the
2 vw ft/sdc wind resolved into the

unprimed coordinate
3 ww frame

A-9
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TABLE A-2 (continued)

MODULE NO. 57130 NON-DIMENSIONAL TERMS (WITH WIND) DICTIONARY

L MAlgebraic
-Symbol Dimensions Explanation

Intermediates
4 u+uw velocity components of

5 V÷V ft/sec the relative wind resolved
onto the unprimed coord-

6 w+ww inate frame

7 h ft altitude

9 V ft/sec magnitude of the relative

wind

11 a rad angle-of-attack

12 B rad side slip angle

13 p~d/2v dimensionless non-dimensional terms

14 pBd/ 2 v dimensionless non-dimensional term.

15 qd/2v dimensionless non-dimensional terms

16 rd/2v dimensionless non-dimensional terms
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A,4 ATMOSPHERE (MODULE NO. 9200)

The relationships necessary to define atmospheric properties

as a function of altitude are based on standard equations of fluid
statics. The numbers used in the equations are those of the 1959
ICAO Standard Atmosphere and its extension. The Model is piecewise
continuous in three segments. It is based on a constant lapse rate
from sea level to the tropopause (36,089 ft.). The atmosphere is
assumed to be isothermal from 36,089 ft. to 82,021 ft. From 82,021
ft. to 154,199, the static temperature increases at a constant rate.

The outputs of the atmosphere model are uniquely determined

given the altitude as an input. These outputs include static

pressure ratio, and local speed of sound. In this particular formu-

lation, one subsidiary calculations is also performed. The air-
speed is used as an input to the model so that Mach No. can be
calculated. Thus, having specified altitude and airspeed, the model
determines static pressure ratio and Mach No. for use in calculating
aerodynamic forces and torques. This module is coded in MARCO-10.

Definitions:

a is local speed of sound in ft/sec

X is ratio of local static pressure to sea level

static pressure

M is Mach Number

tr is the ratio of local static temperature to sea

level static temperature

V is true airspeed in ft/sec

h is altitude above sea level in ft.
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Connections:

V

h

Parameters: None.

Initial States: None.

Intermediates:

tr - 1-(6.8754 x 10 6)h

0 < h < 36089
5.2561a= -tr

tr a 0.75187
36089 < h < 82021

- 1.2656e (-4.8063 x 10-5 )h 
.

tr = 0.49160 + 3.1732 x 10'h
82021 < h < 154199

X - 0.02456(0.65383 + (4.2204
lt)h)-11.388

tr - 1.0

X - e(-. 3 2 2 0 0 4 + (-4.115414 x 10- )h) h > 154199

a - 1116.9 v-."-

M = V/a

States: None.
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I.

V-- 1 7,1 - tr

h- 2 7,2 -X

7,3 "
9200

Figure A-4. Module No. 9200 - Atmosphere
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A.5 AERODYNAMIC FORCES AND MOMENTS

The inputs to this module are:

a. The control deflections (6 y and 6Z)
b. The cant angle (A.)
c, The pressure ratio and Mach Number (X and M)
d. The non-dimensional terms (a, 0, pFd/ 2 v, PBd/ 2 v, qd/2v,

rd/2v)

IP
The most important outputs are:

a. The components of aerodynamic force (X, Y, Z)
b. The components of aerodynamic moment (Lp, LB, M, N)

The simulation in synthesized in two steps. First, the
aerodynamic derivatives are evaluated as functions of Mach Number.
This is formulated in Modules Number 57110 and 8130. Then the
derivatives are combined to evaluate the non-dimensional force and
moment coefficients and are multiplied by the appropriate dimensional
terms to yield force components in pounds and moment components in

foot-pounds. This is accomplished in Module Number 69050.

A.5.1 AERODYNAMIC DERIVATIVES (Module No. 57110)

The several aerodynamic derivatives are expressed as quadratic
functions of Mach Number; i.e.,

C - A + A M + A2 M2

where the coefficients Ao, A,, A2 are fitted to the best available
wind tunnel data or estimates in an independent procedure. The
derivatives which-are employed in the simulation are:
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C A axial force

C, normal force due to angle of attack

CU8 normal force due to fin deflection

C pitching moment due to angle of attack

Cmq damping in pitch

•p Magnus momentna p

C pitching moment due to fin deflection
M6.

CF roll damping of the fin

C ZA rolling moment due to fin cant

CB roll damping of the bodyLp

CF dihedral torque on the canard frame due to fin
La 5 deflection

C A6B body rolling moment due to cant angle
Z

The computation also evaluates the dynamic pressure:

q - 1482.52M2 X (lbs/ft 2 )
These terms are evaluated in Module 57110 presented in Figure A-5.

A.5.2 AERODYNAMIC FORCES MOMENTS (Module No. 69050)

Module Number 69050 evaluates the dimensional forces and
moments which act'on the projectile. An additional aerodynamic
term is required beyond those included in Module Number 87110 and .

this is added using Module Number 8130. Module 69050 is illustrated
in Figure A-6.
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A.6 CONTROLLED SPINNING PROJECTILE (Module 69060,)

Module 69060 simulates the seven degrees-of-freedom of a

controlled spinning projectile in a manner which is consistent with

the theory derived in Section 3 of the main body of this volume,

The coordinate frame for 'the module io made to correspond to

the pseudo-stability axes by setting p - [69060,3,51 equal to zero.
The module accepts wind components relative to the inertial coordin-
ate frame and it computes the projectiles motion relative to the
inertial coordinate frame.

Attention should be called to the sign conventions for wind.
The wind components have been taken as positive when they are in
the direction of the negative coordinate axes. This permits the
total relative wind components to be written as u+uwI v+vw, w+ww
consistent with equations 3-21.

A1
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A. 7 7-DOF PROJECTILE INCLUDING SEELER AND CANA=D FgAmW. (Module 69220)

Module 69220 embodi.es the seven degree-of-freedom simulation of

Module 39060. In addition, it includes the following features:

(1) It computes the relative position of the target and

projectile in the inertial coordinate frame.

(2) The relative position is resolved onto the omero-

ballistic coordinate frame and look-angle components

are evaluated.

0(3) The angle, 0., between the fin-frame and the body

is evaluated.

(4) The angle, 0-F, is used to resolve the canard deflec-

tion in thxe canard frame, 6Yonto the meroballistic

frame and the look-angle components onto the fin-

frame.
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Y 1 7,1 Ax 8,1 F

2 LY 0

,ýF 2 3 Az0  2 U

3 v

T 3 5 co0e 4 w

6 sln-

P 4 7 y 5 PF

8 z 6 PB
. 5 62 LF 7 q

* 0 6 66 a 8 r

W 7 68 b

70 C 9 x°0

1010 yO

73 OF 11 z°0

75 OB

79 12 C 11

80 f 13 c12

14 0 13

22 C 15 C021

23 8 16 c22

17 23

93 ax is 31

94 6Y 19 032

95 Az 20 C3 3

97 y
98 % z

103 y

104 A

169220

Figure A-9. Block Representation of Module 69220 7-DOF

Projectile Including Seeker & Canard Deflection
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